

Vol. 10, No. 1 (2019)

http://www.eludamos.org

Study of Artificial Intelligent Algorithms Applied in Procedural Content
Generation in Video Games

Martín González-Hermida, Enrique Costa-Montenegro, Beatriz Legerén-Lago,
Antonio Pena-Giménez

Eludamos. Journal for Computer Game Culture. 2019; 10 (1), pp. 39–54

Eludamos Vol. 10, No. 1 (2019)
pp. 39–54
Copyright © by Martín González-Hermida, Enrique Costa-Montenegro, Beatriz Legerén-Lago, and Antonio Pena-
Giménez

Study of Artificial Intelligent Algorithms Applied in
Procedural Content Generation in Video Games

MARTÍN GONZÁLEZ-HERMIDA, ENRIQUE COSTA-MONTENEGRO, BEATRIZ
LEGERÉN-LAGO, AND ANTONIO PENA-GIMÉNEZ

I. Introduction
During the last decade, the video game industry has undergone unprecedented
changes. These changes have mainly affected the design process. Originally, video
games were perceived only as a product, but during the last years this vision has
been distorted, approaching more and more the concept of video games as a
service. Due to this change of perspective, video game developers are forced to
generate a lot of content for the one single game, which implies a considerable
increase in production costs. This content must be generated by a designer and, in
most cases, its production also implies that more complex programming tasks are
necessary for its implementation.

So, as the production of content for video games is currently a problem, Procedural
Content Generation (PCG) is presented as a solution to it, automating the generation
process. Using these techniques, content that guarantee hours of playtime can be
algorithmically generated without further work by designers. In other words, the
fundamental idea of the procedural content generation is that the video game, or part
of it, is generated computationally through a well-defined procedure, instead of being
developed manually.

The use of these techniques has experienced an important growth in the last decade
and according to (GamingBolt 2018) is likely to do so at a higher rate. However, its
origin is not so recent. The first important title using procedural generation dates back
to 1980 with the Rogue (A.I. Design 1980) video game. In this video game for
terminal, the player was represented by the ASCII character "@" and had to go
through a series of dungeons that were generated in a pseudo-random way in each
game. The next great milestone within PCG would be Minecraft (Mojang 2011), being
the most popular video game to date that makes use of these techniques, with a total
of 122 million copies sold (Polygon 2017). Since then, the amount of video games
using procedural generation has increased significantly, and has been a very
important differentiating factor for video games produced by low-medium budget
companies, such as Minecraft (Mojang 2011). More recent titles are No Man's Sky
(Hello Games 2016) and Starbound (Chucklefish 2016), which implement procedural
generation of galaxies, with fully explorable planets, in 3D and 2D environments
respectively.

The procedural content generation is not a trivial problem, since the techniques used
can be applied to many of the elements that make up a video game (from the lowest
level of how to create sounds or textures, to a more abstract level as the rules that
govern the game). The absence of a general methodology (Hendrikx and Meijer

40 Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019)

2013) that can be applied to each of these components and the scarcity of practical
information on the subject are then challenging, as the generator design and
constraints will affect considerably the final result.

Our work will consist on the development of four demos1 where we use different
procedural generation techniques. Each demo will use one or more specific artificial
intelligent techniques to generate a specific type of content. We have used Unity, a
well-known IDE (Integrated Development System) specialized for the development of
video games, to create these demos. This work can also serve as a starting point to
know how to deal with a problem that can take advantage of the use of procedural
generation techniques.

In this paper, we will study different artificial intelligent algorithms, mostly rule based,
used for procedural content generation. These algorithms will be applied to: (i)
labyrinth generation, (ii) dungeon generation, (iii) 2D terrain generation and (iv) 3D
terrain generation. We will evaluate the performance of all these algorithms and
apply them in four video games demos created in Unity. This performance tests are
only an approximation to the complexity of the algorithms, since their results will
strongly depend on the hardware used, the operating system.

II. Labyrinth Generation
Labyrinths are resources that currently are not used very often in the design of video
games. In the past, and more specifically, in the early days of video games, the use
of labyrinths as the main element of entertainment had a more considerable role. In
recent years, its use is normally reduced to specific levels within a video game where
the player is forced to complete a maze in order to progress of his game. Some
examples can be any title of the saga The Legend of Zelda (Nintendo 1986) or Diablo
(Blizzard North 1996).

It may be interesting to use a labyrinth generator for several reasons. One of them
may be the fact that the manual design of labyrinths is not an easy task and, in many
cases, its implementation could be even more tedious than the use of an algorithm
for its construction. Another compelling reason is predictability from the player's point
of view. Once the labyrinth has been solved, it is trivial to solve when it is faced
again, causing these moments to become uninteresting. These two problems could
be solved using procedural generation to create the labyrinth.

We have developed MazeGen (Figure 1), a playable demo whose objective is the
resolution of a labyrinth that has been generated using an algorithm. It allows to user
to select the next options: 1) rows: the height of the labyrinth; 2) columns: the width;
3) Algorithm: algorithm used in the generation, can choose between Depth First
Search, Prim’s Algorithm or Recursive Division; 4) Seed: to change the seed of the
random number generator; 5) View: allowing the player to use a first person view or
an aerial view; and 6) Fog Mode: to visualize only the areas of the labyrinth that have
already been visited by the player.

Algorithms generating labyrinths is a subject extensively treated, and not necessarily
by its application in video games. We will briefly explain three algorithms (Kozlova, A.

 González-Hermida, Costa-Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial ... 41

et al. 2015) widely used to generate labyrinths. The labyrinths generated by these
algorithms are modeled as two-dimensional matrixes whose elements represent the
cells of the labyrinth, each with its four walls. The labyrinths generated always meet
the definition of a perfect labyrinth:

 The labyrinth must have a single entrance and a single exit (these are usually
located at the corners).

 All the cells that compose it must be reachable.

 The labyrinth cannot contain loops (there is only one way to get from one box
to another).

The three used algorithms are:

 Depth First Search (DFS): an agent (Nwana 1996) is used that randomly
wanders through the matrix, breaking walls between the cells through which it
advances. First, a starting point is chosen for the agent and it can never pass
through the same cell twice as it advances breaking walls. In case of not being
able to advance more, it goes back following its steps until finding a
neighboring cell by which to be able to advance. The process ends when it
has passed through all the cells. This algorithm generates labyrinths with very
long corridors, with very small trees of choice and with short paths with no exit.
Therefore it reduces the chances of getting lost and it is usually necessary to
travel long distances to reach the end.

 Prim's Algorithm: it begins with the random selection of a cell in the matrix.
Subsequently, one of its neighbor cells is chosen randomly, the wall that exists
between them is broken and added to a list of cells already visited. In each
iteration, one of the cells in the list is chosen randomly, one of its neighbors is
chosen randomly, if it is not in the list of cells already visited, the wall is broken
between them and it is added to the list. The process is repeated until all the
cells are in the list of cells already visited. This algorithm creates labyrinths
with very short corridors, multitude of crosses and multiple roads with no exit.
It is very easy to get lost during the course of it, but the minimum distance
necessary to travel it is usually very small.

 Recursive Division: it starts with a cell matrix without walls. The generation
process consists of placing a wall (horizontal or vertical and not necessarily in
the center) that divides the matrix into two parts. Then, decides to open a hole
in a cell along the wall, to allow access between the two sections. Of the two
parts generated from this division, it keeps the largest one in a stack and
chooses the smallest one to continue working. The previous process is
repeated until the part with which we are working has one of its dimensions
with a length equal to one cell. Then, the algorithm continues with a part
extracted from the stack. The entire process ends when the stack is empty.
The best adjective to define this algorithm is chaotic. It generates very
unpredictable mazes, since these can be excessively simple or exaggeratedly
entangled and complex.

42 Eludamos. Journal for Computer Game Culture

To test the performance of these algorithms, we generated labyrinths of dimensions
5*5, 16*16, and 50*50 in an Android smartphone device (Xiaomi Redmi 3). We can
see the results in Table I. In the case of 5*5 small labyri
for practical purposes. With 16*16, Prim’s algorithm gives better results and would be
the safest option to avoid maximum generation times. For the 50*50 case, Prim is still
the algorithm with best results, DFS clearly gets
it is necessary to go back over the previous steps too often, and during this time it
does not dig walls. Recursive Division remain practically identical in average
performance as Prim but with worst maximum time. Anyw
in an acceptable range for gaming in a smartphone.

 5*5

 Min. Average

Depth First

Search
55.37 61.95

Prim’s

Algorithm
56.79 62.85

Recursive

Division
58.23 64.21

Table I: MazeGen algorithms performance measures in miliseconds

(a) Depth First Search

(c) Recursive Division

Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019

To test the performance of these algorithms, we generated labyrinths of dimensions
5*5, 16*16, and 50*50 in an Android smartphone device (Xiaomi Redmi 3). We can
see the results in Table I. In the case of 5*5 small labyrinths, the results are identical
for practical purposes. With 16*16, Prim’s algorithm gives better results and would be
the safest option to avoid maximum generation times. For the 50*50 case, Prim is still
the algorithm with best results, DFS clearly gets the worst result, most likely because
it is necessary to go back over the previous steps too often, and during this time it
does not dig walls. Recursive Division remain practically identical in average
performance as Prim but with worst maximum time. Anyway, all of them give results
in an acceptable range for gaming in a smartphone.

5*5 16*16

Average Max. Min. Average Max. Min.

61.95 68.05 198.9 212.4 229.8 1497

62.85 68.66 199.2 208.7 219.9 1175

64.21 67.81 198.8 209.2 231.3 1162

Table I: MazeGen algorithms performance measures in miliseconds

(a) Depth First Search (b) Prim’s Algorithm

(c) Recursive Division (d) Fog mode

2019)

To test the performance of these algorithms, we generated labyrinths of dimensions
5*5, 16*16, and 50*50 in an Android smartphone device (Xiaomi Redmi 3). We can

nths, the results are identical
for practical purposes. With 16*16, Prim’s algorithm gives better results and would be
the safest option to avoid maximum generation times. For the 50*50 case, Prim is still

the worst result, most likely because
it is necessary to go back over the previous steps too often, and during this time it
does not dig walls. Recursive Division remain practically identical in average

ay, all of them give results

50*50

 Average Max.

 1581 1652

 1206 1247

 1213 1280

Table I: MazeGen algorithms performance measures in miliseconds

(b) Prim’s Algorithm

(d) Fog mode

 González-Hermida, Costa-Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial ... 43

(e) First person view

Figure 1: Snapshots of the MazeGen demo

III. Dungeon Generation
We define a dungeon as a set of rooms linked together through several corridors
arranged, generally, in a labyrinthine way. Dungeons are an habitual resource in the
development of video games, some famous examples can be Diablo II (Blizzard
North 2000) or Torchlight II (Runic Games 2012) which have used dungeons
recurrently as part of their level design. In fact, the games based on crossing
dungeons (dungeon-crawler) were one of the pioneer genres to make use of
procedural content generation techniques.

We have developed DungeonGen (Figure 2), a playable demo of a first-person
shooter that uses dungeons generated in a procedural way, but also has a number of
additional details, including the generation of locks (closed doors that need a key to
open them located in another room in the dungeon) and some simple methods for
the placement of enemies and treasures. Every time the player starts a new game, a
completely different dungeon is generated, increasing its replay value.

Figure 2: Snapshot of the DungeonGen demo

The algorithm used in this demo to generate the structure of the dungeon is called
the space binary partition (Shaker et al. 2016, pp.31-55). Consists in the recursive

44 Eludamos. Journal for Computer Game Culture

division of an initial space into sections, which can be used to create dunge
and obtain a representative graph of its structure. Using this algorithm, we obtain as
output a dungeon formed only by halls and corridors (Figure 3a) and a graph that
represents the structure of it (Figure 3b). But this content is of no use by it
necessary to add more details or improvements so that it can be used as content
ready to play, such as treasures, enemies or a system of closed doors that require a
key to open them (Figure 3d). So we added a method of generating dynamic locks,
proportional to the size of the dungeon, which makes the content generated more
interesting, by forcing the player to visit more rooms than necessary in search of a
needed key. Other algorithms were used to place enemies and treasures in the
rooms of the dungeon.

(a) Rooms with corridors

(c) Representation

Figure 3:

The Space Binary Partition works as follows. Initially, that space is divided into two
parts by a horizontal or vertical line at a random point of it. Of the fragments
generated, the largest is stored in a stack, while the small one is chosen to continue
working. The chosen fragment is further divided by applying the previous process
until the size of one of the fragments generated is less than a threshold. In the latter
case, a fragment is extracted from the stack to continue working. The process ends
when the stack is empty, because all the fragments that remain are smaller than the
threshold. The final fragments will be where the rooms of the dungeon will be placed.

Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019

division of an initial space into sections, which can be used to create dunge
and obtain a representative graph of its structure. Using this algorithm, we obtain as
output a dungeon formed only by halls and corridors (Figure 3a) and a graph that
represents the structure of it (Figure 3b). But this content is of no use by it
necessary to add more details or improvements so that it can be used as content
ready to play, such as treasures, enemies or a system of closed doors that require a
key to open them (Figure 3d). So we added a method of generating dynamic locks,
proportional to the size of the dungeon, which makes the content generated more
interesting, by forcing the player to visit more rooms than necessary in search of a
needed key. Other algorithms were used to place enemies and treasures in the

(a) Rooms with corridors (b) Dungeon final graph

(d) Final dungeon

Figure 3: Dungeon generation progress

The Space Binary Partition works as follows. Initially, that space is divided into two
parts by a horizontal or vertical line at a random point of it. Of the fragments
generated, the largest is stored in a stack, while the small one is chosen to continue

orking. The chosen fragment is further divided by applying the previous process
until the size of one of the fragments generated is less than a threshold. In the latter
case, a fragment is extracted from the stack to continue working. The process ends

the stack is empty, because all the fragments that remain are smaller than the
threshold. The final fragments will be where the rooms of the dungeon will be placed.

2019)

division of an initial space into sections, which can be used to create dungeon rooms
and obtain a representative graph of its structure. Using this algorithm, we obtain as
output a dungeon formed only by halls and corridors (Figure 3a) and a graph that
represents the structure of it (Figure 3b). But this content is of no use by itself, it is
necessary to add more details or improvements so that it can be used as content
ready to play, such as treasures, enemies or a system of closed doors that require a
key to open them (Figure 3d). So we added a method of generating dynamic locks,
proportional to the size of the dungeon, which makes the content generated more
interesting, by forcing the player to visit more rooms than necessary in search of a
needed key. Other algorithms were used to place enemies and treasures in the

(b) Dungeon final graph

(d) Final dungeon

The Space Binary Partition works as follows. Initially, that space is divided into two
parts by a horizontal or vertical line at a random point of it. Of the fragments
generated, the largest is stored in a stack, while the small one is chosen to continue

orking. The chosen fragment is further divided by applying the previous process
until the size of one of the fragments generated is less than a threshold. In the latter
case, a fragment is extracted from the stack to continue working. The process ends

the stack is empty, because all the fragments that remain are smaller than the
threshold. The final fragments will be where the rooms of the dungeon will be placed.

 González-Hermida, Costa-Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial ... 45

Its dimensions are chosen by randomizing the position of the lower left corner and
the upper right corner within the limits of a fragment. Through this method, we can
draw a graph of the dungeon based on the fragments that have been generated.
Rooms will correspond to the lowest nodes in the graph. This abstract model
provides a series of advantages, among them is the fact that it provides a superior
point of view about the structure of the dungeon and also the possibility of creating
corridors between brother nodes, which reduces the possible intersections of these
with other corridors or rooms, shortening its length.

The generation of dynamic locks is achieved through a seven steps algorithm
developed from the dungeon graph, that ensures that all the rooms of the dungeon
are accessible and therefore, to prevent a key from a door being placed behind it,
preventing its opening. This method guarantees that the dungeon generated will
always have a solution, and that the blockages that are generated will try to
maximize the number of rooms that are on each side of them. It also works
independently with respect to the position of the end of the dungeon, since it ensures
that all rooms can be reached.

The number of enemies in a room is calculated randomly given a maximum number.
Rooms with objects (such as keys or objects for combat) may contain a greater
number of enemies than usual. The treasures are placed in rooms that are only
accessible through a single corridor to force the exploration of the player.

To test the performance of our algorithms, we obtained the average measures for
some generated dungeons. The number of dungeons increase as the player passes
different levels, also the number of enemies and the difficulty of the demo. In Table II
we can see the generation times of the different algorithms in a laptop (Intel Core i7-
7700HQ CPU, 16 GB RAM, Geforce GTX 1050 GPU with Windows 10 OS). As we
can see the times are quite small and will not affect the experience of the game.

Level vs

Algorithms generation time (ms)

Dungeon level 1:

4 - 6 rooms

Dungeon level 5:

8 – 12 rooms

Dungeon level 9:

12 - 16 rooms

Rooms 9.153 15.34 26.57

Corridors 76.88 299.1 587.2

Blocks 8.251 17.56 28.16

Enemies and Treasures 4.421 5.859 8.992

Total 98.71 337.9 650.9

Table II: DungeonGen algorithms performance measures

46 Eludamos. Journal for Computer Game Culture

IV. 2D Terrain Generation
In this case we are dealing with the shape of the terrain of the world or the regions
where the events in the game occur. In The Legend of Zelda (Nintendo 1986), all
events take place in the kingdom of
which different elements are found such as forests, rivers, mountains, coastal areas,
etc. where different creatures exist and where civilizations have also appeared,
including the changes in the terrain associated with them, such as the construction of
cities, towns, roads, etc. The challenge of procedurally generating civilizations and
changes to the terrain according to historical facts, generated also in an algorithmic
way, has already been faced by Dwarf Fortress (Tarn Adams 2006), where when the
game starts, several generations of terrain are made, simulations of the passage of
time and changes caused by possible civilizations until reaching a result that meets
minimum requirements.

Although 2D terrain, or land, is a widely used resource in the video game in
does not involve playable content on its own. This implies that it is necessary to
make several modifications or additions to the process of generating land according
to the genre of the game (strategy, shooter, adventure, etc.) in order to use
results in the final product. The design of realistic terrains manually can be a very
tedious job, so although the procedural generation of land is not used as a
characteristic of the final product, it can be useful to help or suggest to the designers
where the game could be set during the development phase.

We have developed MapGen (Figure 4), a 2D maps generator based on grid and
focused mainly on turn-based strategy games, initially for two players, inspired by the
title Advance Wars (Intelligent Sy
user to specify some of the parameters of the generated maps. The applied
algorithms can be divided into two sections: those algorithms that are used to
generate the 2D terrain and those that serve to
based strategy games.

Figure 4: Snapshot of the MapGen demo

To generate the land, the map is composed of the following kinds of terrain each one
occupying a cell: water, plain, mountain and forest. The different combinations of
them in a bidimensional matrix will create the generated land. We have developed

Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019

IV. 2D Terrain Generation
In this case we are dealing with the shape of the terrain of the world or the regions
where the events in the game occur. In The Legend of Zelda (Nintendo 1986), all
events take place in the kingdom of Hyrule, which has a specific terrain shape, in

ifferent elements are found such as forests, rivers, mountains, coastal areas,
etc. where different creatures exist and where civilizations have also appeared,
including the changes in the terrain associated with them, such as the construction of

owns, roads, etc. The challenge of procedurally generating civilizations and
changes to the terrain according to historical facts, generated also in an algorithmic
way, has already been faced by Dwarf Fortress (Tarn Adams 2006), where when the

several generations of terrain are made, simulations of the passage of
time and changes caused by possible civilizations until reaching a result that meets

Although 2D terrain, or land, is a widely used resource in the video game in
does not involve playable content on its own. This implies that it is necessary to
make several modifications or additions to the process of generating land according
to the genre of the game (strategy, shooter, adventure, etc.) in order to use
results in the final product. The design of realistic terrains manually can be a very
tedious job, so although the procedural generation of land is not used as a
characteristic of the final product, it can be useful to help or suggest to the designers
where the game could be set during the development phase.

We have developed MapGen (Figure 4), a 2D maps generator based on grid and
based strategy games, initially for two players, inspired by the

title Advance Wars (Intelligent Systems 2001). It is an interactive tool that allows the
user to specify some of the parameters of the generated maps. The applied
algorithms can be divided into two sections: those algorithms that are used to
generate the 2D terrain and those that serve to adapt their result to the genre of turn

Figure 4: Snapshot of the MapGen demo

To generate the land, the map is composed of the following kinds of terrain each one
occupying a cell: water, plain, mountain and forest. The different combinations of
them in a bidimensional matrix will create the generated land. We have developed

2019)

In this case we are dealing with the shape of the terrain of the world or the regions
where the events in the game occur. In The Legend of Zelda (Nintendo 1986), all

which has a specific terrain shape, in
ifferent elements are found such as forests, rivers, mountains, coastal areas,

etc. where different creatures exist and where civilizations have also appeared,
including the changes in the terrain associated with them, such as the construction of

owns, roads, etc. The challenge of procedurally generating civilizations and
changes to the terrain according to historical facts, generated also in an algorithmic
way, has already been faced by Dwarf Fortress (Tarn Adams 2006), where when the

several generations of terrain are made, simulations of the passage of
time and changes caused by possible civilizations until reaching a result that meets

Although 2D terrain, or land, is a widely used resource in the video game industry, it
does not involve playable content on its own. This implies that it is necessary to
make several modifications or additions to the process of generating land according
to the genre of the game (strategy, shooter, adventure, etc.) in order to use the
results in the final product. The design of realistic terrains manually can be a very
tedious job, so although the procedural generation of land is not used as a
characteristic of the final product, it can be useful to help or suggest to the designers

We have developed MapGen (Figure 4), a 2D maps generator based on grid and
based strategy games, initially for two players, inspired by the

stems 2001). It is an interactive tool that allows the
user to specify some of the parameters of the generated maps. The applied
algorithms can be divided into two sections: those algorithms that are used to

adapt their result to the genre of turn-

To generate the land, the map is composed of the following kinds of terrain each one
occupying a cell: water, plain, mountain and forest. The different combinations of
them in a bidimensional matrix will create the generated land. We have developed

 González-Hermida, Costa-Montenegro, Legerén

our own method, inspired by techniques such as Cellular Automata (Schweitzer et al.
2003), which aims to imitate, in a simplified way, the process of creation of volcanic
islands. So the grid will initially be formed only by water cells. Later, we will choose
some grid points in a random way, from which the plain type cells will begin to
expand. In each iteration, the probability of expansion to adjacent cells decreases. At
the end of the process of expansion of the plain we will have a primitive formation of
the land. The placement of the forest and mountain type cells follows a similar
process, but with certain restrictions. These cell types can only be expanded over
other plain cells. With this we avoid generating isolated mountain formations by water
and we also provide a certain coherence to the generated terrain, since the
mountains and forests will not be randomly distributed over the surface of the islands.
An example can be seen in Figure 5a.

In strategy games, it is common to face two players and each of them have initial
establishments. In addition, resources also tend to exist and they are spread across
the map symmetrically, so that both players have the same possibilities to take
control. In our demo, the initial settlements are placed trying to maximize the distance
between them in plain or forest type cells. Subsequently, a road is drawn between
them, which will be the fastest way to reach the base of the opponent using the A*
algorithm (Hart et al. 1968), which derives from the Dijkstra algorithm (Dijkstra 1959),
but specializes to quickly find the shortest path between two points. The resources
are placed symmetrically using the Dijkstra algorithm, assigning a cost to each cell
according to its type. The result can be seen in Figure 5b.

(a) Terrain generated

Figure 5: MapGen demo after different algorithms

The land generation algorithm places different cell types (water, plain, mountain and
forest) in the map, inspired by the Cellular Automata
steps:

1. First, the dimensions of the map are chosen, filling it all with water

2. Afterwards, a number of seeds of plain type cells are chosen and placed
randomly.

Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial

method, inspired by techniques such as Cellular Automata (Schweitzer et al.
2003), which aims to imitate, in a simplified way, the process of creation of volcanic
islands. So the grid will initially be formed only by water cells. Later, we will choose

e grid points in a random way, from which the plain type cells will begin to
expand. In each iteration, the probability of expansion to adjacent cells decreases. At
the end of the process of expansion of the plain we will have a primitive formation of

land. The placement of the forest and mountain type cells follows a similar
process, but with certain restrictions. These cell types can only be expanded over
other plain cells. With this we avoid generating isolated mountain formations by water

o provide a certain coherence to the generated terrain, since the
mountains and forests will not be randomly distributed over the surface of the islands.
An example can be seen in Figure 5a.

In strategy games, it is common to face two players and each of them have initial
establishments. In addition, resources also tend to exist and they are spread across
the map symmetrically, so that both players have the same possibilities to take

In our demo, the initial settlements are placed trying to maximize the distance
between them in plain or forest type cells. Subsequently, a road is drawn between
them, which will be the fastest way to reach the base of the opponent using the A*

Hart et al. 1968), which derives from the Dijkstra algorithm (Dijkstra 1959),
but specializes to quickly find the shortest path between two points. The resources
are placed symmetrically using the Dijkstra algorithm, assigning a cost to each cell

to its type. The result can be seen in Figure 5b.

(a) Terrain generated (b) Adapted final map

Figure 5: MapGen demo after different algorithms

The land generation algorithm places different cell types (water, plain, mountain and
map, inspired by the Cellular Automata technique, follows the next

First, the dimensions of the map are chosen, filling it all with water

Afterwards, a number of seeds of plain type cells are chosen and placed

Study of Artificial ... 47

method, inspired by techniques such as Cellular Automata (Schweitzer et al.
2003), which aims to imitate, in a simplified way, the process of creation of volcanic
islands. So the grid will initially be formed only by water cells. Later, we will choose

e grid points in a random way, from which the plain type cells will begin to
expand. In each iteration, the probability of expansion to adjacent cells decreases. At
the end of the process of expansion of the plain we will have a primitive formation of

land. The placement of the forest and mountain type cells follows a similar
process, but with certain restrictions. These cell types can only be expanded over
other plain cells. With this we avoid generating isolated mountain formations by water

o provide a certain coherence to the generated terrain, since the
mountains and forests will not be randomly distributed over the surface of the islands.

In strategy games, it is common to face two players and each of them have initial
establishments. In addition, resources also tend to exist and they are spread across
the map symmetrically, so that both players have the same possibilities to take

In our demo, the initial settlements are placed trying to maximize the distance
between them in plain or forest type cells. Subsequently, a road is drawn between
them, which will be the fastest way to reach the base of the opponent using the A*

Hart et al. 1968), which derives from the Dijkstra algorithm (Dijkstra 1959),
but specializes to quickly find the shortest path between two points. The resources
are placed symmetrically using the Dijkstra algorithm, assigning a cost to each cell

(b) Adapted final map

The land generation algorithm places different cell types (water, plain, mountain and
technique, follows the next

First, the dimensions of the map are chosen, filling it all with water cells.

Afterwards, a number of seeds of plain type cells are chosen and placed

48 Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019)

3. This planted seeds influence the cells around them, causing nearby cells to
become, with a certain probability, more plain cells. This process is repeated
during a series of iterations and with each of them the probabilities of
expansion are reduced.

4. Steps 2 and 3 are repeated for the mountain and forest type cells, but these
must follow stricter expansion rules as they can only be extended over plain
type cells.

The function chosen for the reduction of probability according to the iteration (starting
with i = 0) is the following:

After some tests, we have selected the values in Table III for each of the types of
cells for the number of seeds, the number of total iterations and the initial probability
values of expansion.

Terrain Seeds Iterations Initial probability

Plain 8 6 0.85

Mountain 18 1 0.2

Forest 20 1 0.2

Table III: MapGen terrain generation values chosen for different types of cells

The strategy games adaptation algorithm, given a previous map with a defined
terrain, places the player’s bases and the resources that players can capture trying to
put them in locations where both players have the same opportunity to get them. The
steps that the algorithm follows are:

1. The bases of the players are placed trying to maximize the distance in a
straight line between them, in cells of type plain or forest. A little randomness
id added to avoid monotony in locations.

2. A road that connects the bases of the two players is drawn. To select the
layout of the road we use the algorithm A*, which derives from the Dijkstra
algorithm. We give different costs to the different cells: 1 for plain, 2 for forest,
6 for mountain and 8 for water. So the roads will try to avoid crossing mountain
or water cells.

3. The placement of resources by the map is done using the Dijkstra algorithm,
only on the plain or forest type cells. This algorithm requires the calculation of
two cost maps. We consider two types of resources: 1) Equidistant resources:
those that are approximately at the same distance (respecting the cell’s cost

 González-Hermida, Costa-Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial ... 49

system) of the initial establishments of the two players; and 2) Symmetric
resources: those that are easier to capture by one of the players, because
they are closer to the base of any of them, but for the existence of one of
these, there must always be another equivalent for the opposing player.

To test the performance of our algorithms, we evaluated them, finding the main
problems in the generation algorithm and the placement of the bases as they
consume a high number of resources. We reduce the complexity of the generation
algorithm by only taking into account in the current iteration the cells generated in the
previous iteration, obtaining more uniform values in the iterations. With the placement
of the bases, finding the longest possible distance between two valid cells of the
entire map leads to a complexity problem O(n·(n-1)) where n is the total number of
cells in the map.

In Table IV we can see the generation times of the different algorithms in a laptop
(Intel Core i7-7700HQ CPU, 16 GB RAM, Geforce GTX 1050 GPU with Windows 10
OS). The time used to find the optimal placement of the bases increases enormously
as does the total number of cells on the map. From certain dimensions, suboptimal
solutions might have to be considered to avoid long generation times, or performing
these algorithms in background while the player is in the previous level, as doing it in
real time will impact in the gameplay experience.

Map size vs

Algorithms generation time (ms)
10*10 32*32 60*60

Terrain 3.628 6.300 297.33

Plain 2.584 31.80 212.33

Mountain 0.655 6.000 44.5

Forest 0.389 6.300 40.5

Settlements 11.08 1280.3 18,310

Bases of the players 9.735 1220 18,160

Layout of roads 1.345 30.30 253.8

Resources 5.451 101.2 665.7

Equidistant 5.115 84.8 490.5

Symmetric 0.336 16.4 175.2

Total 20.16 1,395 19,380

Table IV: MapGen algorithms performance measures

50 Eludamos. Journal for Computer Game Culture

V. 3D Terrain Generation
We have developed MyCraft
part of its content. The main peculiarity of these lands is that they are formed only by
blocks, inspired by the game Minecraft (Mojang 2011) that also makes use of them.
This demo consists of a small
The terrain through which the player can move is potentially infinite (not really, mainly
due to memory limitations) since it is generated as the player navigates through it.

Figure 6: Snapshot of the MyCraft demo

For the generation of 3D terrain based on blocks, the best option is to model the
terrain as a bidimensional matrix (because the coordinates to the axes corresponding
to depth and length take discrete values) and sav
each point, as if it were a map of heights. Filling in the values of this matrix is not as
simple as using a conventional random number generator, since the values obtained
would be independent of each other and the gen
Therefore, we must use other types of random number generators, whose output
values have a minimal correlation, such as Perlin noise (Shaker et al. 2016, pp.57
72) (Figure 7a).

To get the terrain generated continuously
adaptations need to be applied. First, the terrain generated is divided into portions,
commonly called chunks, of 16*16*16 blocks. This division is useful because we can
generate the terrain on demand in a simple way and improve the performance of the
game during navigation. When starting the demo, a certain number of chunks are
generated around the player. When t
have been left behind will not longer be drawn, as can be seen in Figure 7b.
Simultaneously, a number of chunks equivalent to the hidden ones are generated,
with which the number of chunks shown is always the
performance during navigation is more uniform.

Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019

V. 3D Terrain Generation
We have developed MyCraft (Figure 6), a demo that uses 3D terrain generation as
part of its content. The main peculiarity of these lands is that they are formed only by
blocks, inspired by the game Minecraft (Mojang 2011) that also makes use of them.
This demo consists of a small navigation simulator for terrains based on 3D blocks.
The terrain through which the player can move is potentially infinite (not really, mainly
due to memory limitations) since it is generated as the player navigates through it.

Figure 6: Snapshot of the MyCraft demo

For the generation of 3D terrain based on blocks, the best option is to model the
terrain as a bidimensional matrix (because the coordinates to the axes corresponding
to depth and length take discrete values) and save the corresponding height value for
each point, as if it were a map of heights. Filling in the values of this matrix is not as
simple as using a conventional random number generator, since the values obtained
would be independent of each other and the generated terrain would lack coherence.
Therefore, we must use other types of random number generators, whose output
values have a minimal correlation, such as Perlin noise (Shaker et al. 2016, pp.57

To get the terrain generated continuously as the player moves in one direction, some
adaptations need to be applied. First, the terrain generated is divided into portions,

of 16*16*16 blocks. This division is useful because we can
generate the terrain on demand in a simple way and improve the performance of the
game during navigation. When starting the demo, a certain number of chunks are
generated around the player. When the player advances to another chunk
have been left behind will not longer be drawn, as can be seen in Figure 7b.
Simultaneously, a number of chunks equivalent to the hidden ones are generated,
with which the number of chunks shown is always the same and with it, the
performance during navigation is more uniform.

2019)

(Figure 6), a demo that uses 3D terrain generation as
part of its content. The main peculiarity of these lands is that they are formed only by
blocks, inspired by the game Minecraft (Mojang 2011) that also makes use of them.

navigation simulator for terrains based on 3D blocks.
The terrain through which the player can move is potentially infinite (not really, mainly
due to memory limitations) since it is generated as the player navigates through it.

For the generation of 3D terrain based on blocks, the best option is to model the
terrain as a bidimensional matrix (because the coordinates to the axes corresponding

e the corresponding height value for
each point, as if it were a map of heights. Filling in the values of this matrix is not as
simple as using a conventional random number generator, since the values obtained

erated terrain would lack coherence.
Therefore, we must use other types of random number generators, whose output
values have a minimal correlation, such as Perlin noise (Shaker et al. 2016, pp.57-

as the player moves in one direction, some
adaptations need to be applied. First, the terrain generated is divided into portions,

of 16*16*16 blocks. This division is useful because we can
generate the terrain on demand in a simple way and improve the performance of the
game during navigation. When starting the demo, a certain number of chunks are

he player advances to another chunk, those that
have been left behind will not longer be drawn, as can be seen in Figure 7b.
Simultaneously, a number of chunks equivalent to the hidden ones are generated,

same and with it, the

 González-Hermida, Costa-Montenegro, Legerén

(a) Terrain generated by Perlin noise.

With the Perlin's Noise the gradient
bit of artificiality because the terrain undulates at a constant frequency. A real terrain
has variations at multiple scales, but in all of them a similar structure is preserved.
The simplest way to produce land with these properties is to repeat the same
process but at multiple scales, adapting its amplitude to the chosen frequency. Using
the function:

heightMap [x, z] = Mathf.RoundToInt (Mathf.PerlinNoise (x, z) * maxHeight);

the results are not very satisfactory as we obtain a chaotic terrain (Figure 8a) due to
the samples that we are taking are too far apart in space. In order to improve these
results, the best option will be to use a scaling factor for the coordinates received by
the noise generator. The scaling factor should be a decimal number between 0 and
1, with values close to 1 generate more chaotic terrain, while values close to 0
generate terrains with much smoother transitions between changes in height. In our
tests we found that the most recommended values are in the range of 0.01 to 0.05.
Finally we selected as scaling factor value 0.0175, obtaining the results that can be
seen in Figure 8b. Another interesting improvement that can be used is a seed to
allow generating different terrains. Finally the function used is:

heightMap [x, z] = Mathf.RoundToInt (Mathf.PerlinNoise ((x * scaler + seed), (z *
scaler + seed)) * maxHeight);

To fill these lands with a greater degree of reality, a good starting point could be to
add details to the terrain as those that can be elements of an ecosystem, such as
fauna or flora. So, we decided to add trees to the generated lands. The simplest
option, but which also achieves a reasonable visual result, would be the distribution
of trees according to the type of block, only grass or earth, and using a random
number generator. To avoid monotony we can also randomly choose the height of
tree trunks within a reasonable range and have at least two types of leaf layout. With
this, the results obtained will be much more visually attractive, as can be seen in
Figure 8c.

Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial

(a) Terrain generated by Perlin noise. (b) Division of the terrain into chunks.

Figure 7: MyCraft terrain

Noise the gradient-based terrain looks more natural, it still retains a
bit of artificiality because the terrain undulates at a constant frequency. A real terrain
has variations at multiple scales, but in all of them a similar structure is preserved.

simplest way to produce land with these properties is to repeat the same
process but at multiple scales, adapting its amplitude to the chosen frequency. Using

heightMap [x, z] = Mathf.RoundToInt (Mathf.PerlinNoise (x, z) * maxHeight);

sults are not very satisfactory as we obtain a chaotic terrain (Figure 8a) due to
the samples that we are taking are too far apart in space. In order to improve these
results, the best option will be to use a scaling factor for the coordinates received by
the noise generator. The scaling factor should be a decimal number between 0 and
1, with values close to 1 generate more chaotic terrain, while values close to 0
generate terrains with much smoother transitions between changes in height. In our

und that the most recommended values are in the range of 0.01 to 0.05.
Finally we selected as scaling factor value 0.0175, obtaining the results that can be
seen in Figure 8b. Another interesting improvement that can be used is a seed to

ifferent terrains. Finally the function used is:

heightMap [x, z] = Mathf.RoundToInt (Mathf.PerlinNoise ((x * scaler + seed), (z *
scaler + seed)) * maxHeight);

To fill these lands with a greater degree of reality, a good starting point could be to
tails to the terrain as those that can be elements of an ecosystem, such as

fauna or flora. So, we decided to add trees to the generated lands. The simplest
option, but which also achieves a reasonable visual result, would be the distribution

rding to the type of block, only grass or earth, and using a random
number generator. To avoid monotony we can also randomly choose the height of
tree trunks within a reasonable range and have at least two types of leaf layout. With

ned will be much more visually attractive, as can be seen in

Study of Artificial ... 51

(b) Division of the terrain into chunks.

based terrain looks more natural, it still retains a
bit of artificiality because the terrain undulates at a constant frequency. A real terrain
has variations at multiple scales, but in all of them a similar structure is preserved.

simplest way to produce land with these properties is to repeat the same
process but at multiple scales, adapting its amplitude to the chosen frequency. Using

heightMap [x, z] = Mathf.RoundToInt (Mathf.PerlinNoise (x, z) * maxHeight);

sults are not very satisfactory as we obtain a chaotic terrain (Figure 8a) due to
the samples that we are taking are too far apart in space. In order to improve these
results, the best option will be to use a scaling factor for the coordinates received by
the noise generator. The scaling factor should be a decimal number between 0 and
1, with values close to 1 generate more chaotic terrain, while values close to 0
generate terrains with much smoother transitions between changes in height. In our

und that the most recommended values are in the range of 0.01 to 0.05.
Finally we selected as scaling factor value 0.0175, obtaining the results that can be
seen in Figure 8b. Another interesting improvement that can be used is a seed to

heightMap [x, z] = Mathf.RoundToInt (Mathf.PerlinNoise ((x * scaler + seed), (z *

To fill these lands with a greater degree of reality, a good starting point could be to
tails to the terrain as those that can be elements of an ecosystem, such as

fauna or flora. So, we decided to add trees to the generated lands. The simplest
option, but which also achieves a reasonable visual result, would be the distribution

rding to the type of block, only grass or earth, and using a random
number generator. To avoid monotony we can also randomly choose the height of
tree trunks within a reasonable range and have at least two types of leaf layout. With

ned will be much more visually attractive, as can be seen in

52 Eludamos. Journal for Computer Game Culture

(a) Chaotic terrain

Figure 8: Different stages of the terrain generated

To improve the generation of the terrain, and
the GPU by Unity, we decided to group the terrain blocks generated in chunks
16*16*16. With this a stable navigation performance was achieved, but it still entails
a computational cost that is too high. In Ta
chunk and the initial navigable terrain, composed of 64 chunks. This data has been
obtained using a laptop (Intel Core i7
GPU with Windows 10 OS).

Time (s)

Chunk

generation

Initial terrain generation

Table V: Generation time of a chunk and the initial terrain

VI. Conclusions
There is no general method to produce content for video games automatically. In
(Hendrikx and Meijer 2013), the authors compile the different types of content that
can be produced through procedural generation and which techniques can be used
to produce each of them. In (Shaker et al. 2016), the authors provide different ways
to deal with the problem of procedural generation and deepens the operation of the
techniques that can be used, citing as examples some commercial video games that
use them. In our work, we have put in practice some of the different procedural
content generation techniques that already exist, even more, we have added
improvements on some of them and developed some created by us.

Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019

(a) Chaotic terrain (b) Result with scaling factor

(c) Terrain with trees

Figure 8: Different stages of the terrain generated

To improve the generation of the terrain, and to take advantage of the calls made to
the GPU by Unity, we decided to group the terrain blocks generated in chunks
16*16*16. With this a stable navigation performance was achieved, but it still entails
a computational cost that is too high. In Table V we can see the generation times of a

and the initial navigable terrain, composed of 64 chunks. This data has been
obtained using a laptop (Intel Core i7-7700HQ CPU, 16 GB RAM, Geforce GTX 1050
GPU with Windows 10 OS).

Minimum Average Maximum

3.03 4.62 6.49

Initial terrain generation 10.23 10.84 11.32

Table V: Generation time of a chunk and the initial terrain

There is no general method to produce content for video games automatically. In
Hendrikx and Meijer 2013), the authors compile the different types of content that

can be produced through procedural generation and which techniques can be used
to produce each of them. In (Shaker et al. 2016), the authors provide different ways

ith the problem of procedural generation and deepens the operation of the
techniques that can be used, citing as examples some commercial video games that
use them. In our work, we have put in practice some of the different procedural

chniques that already exist, even more, we have added
improvements on some of them and developed some created by us.

2019)

with scaling factor

to take advantage of the calls made to
the GPU by Unity, we decided to group the terrain blocks generated in chunks of size
16*16*16. With this a stable navigation performance was achieved, but it still entails

ble V we can see the generation times of a
and the initial navigable terrain, composed of 64 chunks. This data has been

7700HQ CPU, 16 GB RAM, Geforce GTX 1050

Maximum

Table V: Generation time of a chunk and the initial terrain

There is no general method to produce content for video games automatically. In
Hendrikx and Meijer 2013), the authors compile the different types of content that

can be produced through procedural generation and which techniques can be used
to produce each of them. In (Shaker et al. 2016), the authors provide different ways

ith the problem of procedural generation and deepens the operation of the
techniques that can be used, citing as examples some commercial video games that
use them. In our work, we have put in practice some of the different procedural

chniques that already exist, even more, we have added
improvements on some of them and developed some created by us.

 González-Hermida, Costa-Montenegro, Legerén-Lago, and Pena-Giménez • Study of Artificial ... 53

As a result, we have developed four demo games, all freely available. These demos
have served to demonstrate the use of different artificial intelligent techniques
applicable to the world of video games for procedural content generation.

Given this, the procedural generation of content can be considered as a diamond in
the rough, whose polishing will be accelerated by the need for content production by
large video game companies and by its potential combination with other fields of
engineering, like Artificial Intelligence.

Games Cited
A.I. Design (1980) Rogue. Epyx (Unix).

Mojang (2011) Minecraft. Mojang (PC).

Hello Games (2016) No man’s sky. Hello Games (PC).

Chucklefish (2016) Starbound. Chucklefish (PC).

Nintendo (1986) The Legend of Zelda. Nintendo (NES).

Blizzard North (1996) Diablo. Blizzard Entertainment (PC).

Blizzard North (2000) Diablo II. Blizzard Entertainment (PC).

Runic Games (2012) Torchlight II. Runic Games (PC).

Tarn Adams (2006) Dwarf Fortress. Bay 12 Games (PC).

Intelligent Systems (2001) Advance Wars. Nintendo (Game Boy Advance).

References
Ariyurek, S., Betin-Can, A., and Surer, E. (2019) Automated Video Game Testing

Using Synthetic and Human-Like Agents. Available from:
https://arxiv.org/abs/1906.00317v1 [Accessed 13 Jan. 2020].

Engemann, Ch., Sudmann, A., eds. (2018) Machine Learning. Medien,
Infrastrukturen und Technologien der Künstlichen Intelligenz. Bielefeld:
Transcript.

Ernst, Ch., Kaldrack, I., Schröter. J., and Sudmann, A. (2019) Künstliche
Intelligenzen. Introduction. Special Issue „Künstliche Intelligenzen“, Zeitschrift
für Medienwissenschaft 21, pp. 10-19.

Escribano (2012) Gamification as the Post-Modern Phalanstère - Is the Gamification
Playing With Us or Are We Playing With Gamification? In Zachariasson, P. &
Wilson, T. (eds.) The Video Game Industry: Formation, Present State, and
Future. Routledge.

54 Eludamos. Journal for Computer Game Culture • Vol. 10, No. 1 (2019)

gamesindustry.biz (2018) Global games market value rising to $134.9bn in 2018.
Available from: https://www.gamesindustry.biz/articles/2018-12-18-global-
games-market-value-rose-to-usd134-9bn-in-2018 [Accessed 13 Jan. 2020].

Goertzel, B. and Pennachin, C. (2007) Artificial General Intelligence. Springer.

LeCun, Y., Bengio, Y and Hinton, G. (2015) Deep Learning. Nature, 521 (May), pp.
436–444.

Newell, A. and Simon, H. A. (1961) GPS, a program that simulates human thought.
In Billing, H. (ed.) Lernende Automaten. Oldenbourg, pp. 109–124.

NVIDIA (2019). Deep learning and AI Startup Incubator. Available from:
https://www.nvidia.com/en-us/deep-learning-ai/startups/ [Accessed 13 Jan.
2020].

Russell, S. J. and Norvig, P. (1995) Artificial Intelligence. A Modern Approach.
Prentice Hall.

Samuel, A. L. (1959) Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development 3, pp. 211–29.

statistica (2019) Worldwide artificial intelligence market revenue. Available from:
https://www.statista.com/statistics/621035/worldwide-artificial-intelligence-
market-revenue/ [Accessed 13 Jan. 2020].

tractica (2019) Artificial Intelligence Software Market to Reach 105.8 Billion in Annual
Worldwide Revenue by 2025. Available from:
https://www.tractica.com/newsroom/press-releases/artificial-intelligence-
software-market-to-reach-105-8-billion-in-annual-worldwide-revenue-by-2025/
[Accessed 13 Jan. 2020].

Turing, A. (1950) Computing machinery and intelligence. Mind, Vol. LIX (236), 1
October 1950, pp. 433–460.

Uber (2019) Uber AI. Available from: https://www.uber.com/de/de/uberai/ [Accessed
13 Jan. 2020].

Unity (2018) Introducing Unity’s Guiding Principles for Ethical AI. Available from:
https://blogs.unity3d.com/2018/11/28/introducing-unitys-guiding-principles-for-
ethical-ai/?_ga=2.147125054.881379825.1564238426-
901192280.1564238426 [Accessed 13 Jan. 2020].

Unity blog (2019) Available from: https://blogs.unity3d.com/2019/01/18/fostering-ai-
research-meet-us-at-aaai-19/ [Accessed 13 Jan. 2020].

Notes

1 All demos are freely available at https://defu.itch.io/

